Interval Valued Intuitionistic (S, T)-Fuzzy Hv-Submodules and their Characterizations

Manoj Kumar Dewangan M M College of Technology Raipur Chhattisgarh

Abstract: The notion of interval valued intuitionistic fuzzy Hv-submodules of an Hv-module with respect to a t-norm T and an s-norm S is given by J.M. Zhan. In this paper, we give some results on interval valued intuitionistic (S, T)-fuzzy Hv-submodules of an Hv-modules.

Keywords: Hv-module, interval valued intuitionistic (S, T)-fuzzy Hv-submodule, interval valued intuitinistic (S, T)-fuzzy relation. **AMS Mathematics Subject Classification (2000):** 20N20.

1. Introduction

The concept of hyperstructure was introduced in 1934 by Marty [1]. Hyperstructures have many applications to several branches of pure and applied sciences. Vougiouklis [2] introduced the notion of H_{ν} -structures, and Davvaz [3] surveyed the theory of H_{ν} -structures. After the introduction of fuzzy sets by Zadeh [4], there have been a number of generalizations of this fundamental concept. The notion of intuitionistic fuzzy sets introduced by Atanassov [5] is one among them. For more details on intuitionistic fuzzy sets, we refer the reader to [6, 7].

In [8] Biswas applied the concept of intuitionistic fuzzy sets to the theory of groups and studied intuitionistic fuzzy subgroups of a group. In [9] Kim et al. introduced the notion of fuzzy subquasigroups of a quasigroup. In [10] Kim and Jun introduced the concept of fuzzy ideals of a semigroup. In [11] Zhan et al. introduced the notion of intuitionistic (S, T)-fuzzy H_{ν} -submodule of an H_{ν} -module.

Basing on [11], in this paper, we apply the notion of interval valued intuitionistic (S, T)-fuzzy H_{ν} -submodules of an H_{ν} -module and describe the characteristic properties. The paper is organized as follows: in section 2 some fundamental definitions on H_{ν} -structures and fuzzy sets are explored, in section 3 we establish some useful properties on interval valued intuitionistic (S, T)-fuzzy H_{ν} -submodules and in section 4 interval valued intuitionistic (S, T)-fuzzy relations on an H_{ν} -module are discussed.

2. Basic Definitions

We first give some basic definitions for proving the further results.

Definition 2.1 [12] Let X be a non-empty set. A mapping $\mu: X \to [0,1]$ is called a fuzzy set in X. The complement of μ , denoted by μ^c , is the fuzzy set in X given by

$$\mu^{c}(x) = 1 - \mu(x) \quad \forall x \in X.$$

Definition 2.2 [12] Let f be a mapping from a set X to a set Y. Let μ be a fuzzy set in X and λ be a fuzzy set in Y. Then the inverse image $f^{-1}(\lambda)$ of λ is a fuzzy set in X defined by

$$f^{-1}(\lambda)(x) = \lambda(f(x)) \quad \forall x \in X.$$

The image $f(\mu)$ of μ is the fuzzy set in Y defined by

$$f(\mu)(y) = \begin{cases} \sup_{x \in f^{-1}(y)} \mu(x), & f^{-1}(y) \neq \emptyset \\ 0, & \text{otherwise} \end{cases}$$

For all $y \in Y$.

Definition 2.3 [12] An intuitionistic fuzzy set A in a non-empty set X is an object having the form $A = \{(x, \alpha_A(x), \beta_A(x)) : x \in X\}$, where the functions $\alpha_A : X \to [0, 1]$ and $\beta_A : X \to [0, 1]$ denote the degree of membership and degree of non membership of each element $x \in X$ to the set A respectively and $0 \le \alpha_A(x) + \beta_A(x) \le 1$ for all $x \in X$. We shall use the symbol $A = \{\alpha_A, \beta_A\}$ for the intuitionistic fuzzy set $A = \{(x, \alpha_A(x), \beta_A(x)) : x \in X\}$.

Definition 2.4 [12] Let
$$A = \{\alpha_A, \beta_A\}$$
 and $B = \{\alpha_B, \beta_B\}$ be intuitionistic fuzzy sets in X . Then $(1) A \subseteq B \Leftrightarrow \alpha_A(x) \le \alpha_B(x)$ and $\beta_A(x) \le \beta_B(x)$,

(2)
$$A^c = \{(x, \beta_A(x), \alpha_A(x)) : x \in X\},\$$

$$(3) A \cap B = \begin{cases} (x, \min\{\alpha_A(x), \alpha_B(x)\}, \\ \max\{\beta_A(x), \beta_B(x)\}\} : x \in X \end{cases},$$

$$(4) A \cup B = \begin{cases} (x, \max\{\alpha_A(x), \alpha_B(x)\}, \\ \min\{\beta_A(x), \beta_B(x)\}\} : x \in X \end{cases},$$

$$(4) A \cup B = \begin{cases} (x, \max\{\alpha_A(x), \alpha_B(x)\}, \\ \min\{\beta_A(x), \beta_B(x)\} : x \in X \end{cases},$$

$$(5) \square A = \{(x, \alpha_A(x), \alpha_A^c(x)) : x \in X\}.$$

$$(6) \Diamond A = \{(x, \beta_A^c(x), \beta_A(x)) : x \in X\}.$$

Definition 2.5 [13] Let G be a non-empty set and $*:G\times G\to \wp^*(G)$ be a hyperoperation, where $\wp^*(G)$ is the set of all the nonempty subsets of G . Where $A*B = \bigcup_{a \in A, b \in B} a*b, \ \forall A, B \subseteq G$.

The * is called weak commutative if $x * y \cap y * x \neq \phi$, $\forall x, y \in G$.

The * is called weak associative if $(x * y) * z \cap x * (y * z) \neq \phi$, $\forall x, y, z \in G$.

A hyperstructure (G, *) is called an H_{ν} -group if

(i) * is weak associative.

(ii) a * G = G * a = G, $\forall a \in G$ (Reproduction axiom).

Definition 2.6 [14] Let G be a H_y-group and let μ be a fuzzy subset of G. Then μ is said to be a fuzzy H_y-subgroup of G if the following axioms hold:

(i) $\min\{\mu(x), \mu(y)\} \le \inf\{\mu(z)\}, \quad \forall x, y \in G \quad \text{(ii)} \quad \text{For all} \quad x, a \in G \quad \text{there exists} \quad y \in G \quad \text{such that } x \in a * y \quad \text{and} \quad x \in G \quad \text{(iii)} \quad \text{for all} \quad x \in G \quad \text{(iii)} \quad \text{(iiii)} \quad \text{(iiii)} \quad \text{(iiii)} \quad \text{($ $\min\{\mu(a), \mu(x)\} \le \{\mu(y)\}.$

Definition 2.7 [15] Let G be a H_v-group. An intuitionistic fuzzy set $A = \{\alpha_A, \beta_A\}$ of G is called intuitionistic fuzzy H_v-subgroup of G if the following axioms hold:

(i)
$$\min\{\alpha_A(x), \alpha_A(y)\} \le \inf_{z \in x * y} \{\alpha_A(z)\}, \quad \forall x, y \in G.$$

(ii) For all $x, a \in G$ there exists $y \in G$ such that $x \in a * y$ and $\min\{\alpha_A(a), \alpha_A(x)\} \le \{\alpha_A(y)\}$.

(iii)
$$\sup_{z \in \mathcal{X}} \{\beta_A(z)\} \le \max\{\beta_A(x), \beta_A(y)\}, \quad \forall x, y \in G.$$

(iv) For all $x, a \in G$ there exists $y \in G$ such that $x \in a * y$ and $\{\beta_A(y)\} \le \max\{\beta_A(a), \beta_A(x)\}$.

Definition 2.8 [13] An Hy-ring is a system $(R, +, \cdot)$ with two hyperoperations satisfying the ring-like axioms:

(i) (R,+) is an H_{ν} -group, that is,

$$((x+y)+z) \cap (x+(y+z)) \neq \phi \quad \forall x, y \in R,$$

$$a+R=R+a=R \quad \forall a \in R;$$

- (ii) (R,\cdot) is an H_{ν} -semigroup;
- (iii) (·) is weak distributive with respect to (+), that is, for all $x, y, z \in R$,

$$(x \cdot (y+z)) \cap (x \cdot y + x \cdot z) \neq \phi,$$

$$((x+y) \cdot z) \cap (x \cdot z + y \cdot z) \neq \phi.$$

Definition 2.9 [16] Let R be an H_v -ring. A nonempty subset I of R is called a left (resp., right) H_v -ideal if the following axioms hold:

- (i) (I,+) is an H_{ν} -subgroup of (R,+),
- (ii) $R \cdot I \subset I$ (resp., $I \cdot R \subset I$).

Definition 2.10 [16] Let $(R, +, \cdot)$ be an H_{ν} -ring and μ a fuzzy subset of R. Then μ is said to be a left (resp., right) fuzzy H_{ν} -ideal of R if the following axioms hold:

- (1) $\min\{\mu(x), \mu(y)\} \le \inf\{\mu(z) : z \in x + y\} \forall x, y \in R$,
- (2) For all $x, a \in R$ there exists $y \in R$ such that $x \in a + y$ and $\min\{\mu(a), \mu(x)\} \le \mu(y)$,
- (3) For all $x, a \in R$ there exists $z \in R$ such that $x \in z + a$ and $\min\{\mu(a), \mu(x)\} \le \mu(z)$,
- $(4)\mu(y) \le \inf\{\mu(z): z \in x \cdot y\}$ [respectively $\mu(x) \le \inf\{\mu(z): z \in x \cdot y\} \quad \forall x, y \in R$].

Definition 2.11 [16] An intuitionistic fuzzy set $A = \{\alpha_A, \beta_A\}$ in R is called a left (resp., right) intuitionistic fuzzy H_{ν} -ideal of R if following axioms hold:

- $(1)\min\{\alpha_A(x),\alpha_A(y)\} \leq \inf\{\alpha_A(z): z \in x+y\} \text{ and } \max\{\beta_A(x),\beta_A(y)\} \geq \sup\{\beta_A(z): z \in x+y\} \text{ for all } x,y \in R,$
- (2) For all $x, a \in R$ there exists $y \in R$ such that $x \in a + y$ and $\min\{\alpha_A(a), \alpha_A(x)\} \le \alpha_A(z)$ and $\max\{\beta_A(a), \beta_A(x)\} \ge \beta_A(y)$,
- (3) For all $x, a \in R$ there exists $z \in R$ such that $x \in z + a$ and $\min\{\mu_A(a), \mu_A(x)\} \le \mu_A(z)$ and $\max\{\beta_A(a), \beta_A(x)\} \ge \beta_A(z)$,
- $(4)\alpha_{A}(y) \leq \inf\{\alpha_{A}(z) : z \in x \cdot y\} \qquad \text{[respectively} \qquad \alpha_{A}(x) \leq \inf\{\alpha_{A}(z) : z \in x \cdot y\} \quad \forall x, y \in R \text{]} \qquad \text{and} \qquad \beta_{A}(y) \geq \sup\{\beta_{A}(z) : z \in x \cdot y\} \quad \forall x, y \in R \text{]}.$

Definition 2.12 [16] A nonempty set M is called an H_v -module over an H_v -ring R if (M, +) is a weak commutative H_v -group and there exists a map

$$(a.(x+y)) \cap (a.x+a.y) \neq \phi,$$

$$\therefore R \times M \to \mathscr{D}^*(M), (r,x) \to r.x \text{ Such that for all } a,b \in R \text{ and } x,y \in M \text{ , we have } ((x+y).a) \cap (x.a+y.a) \neq \phi,$$

$$(a.(b.x)) \cap ((a.b).x) \neq \phi.$$

Note that by using fuzzy sets, we can consider the structure of H_{ν} -module on any ordinary module which is a generalization of a module.

Definition 2.13 [18] A fuzzy set μ in M is called a fuzzy H_v -submodule of M if $(1) \min\{\mu(x), \mu(y)\} \le \inf\{\mu(z): z \in x + y\} \forall x, y \in M$,

- (2) For all $x, a \in M$ there exists $y, z \in M$ such that $x \in (a+y) \cap (z+a)$ and $\min\{\mu(a), \mu(x)\} \le \inf\{\mu(y), \mu(z)\},$
- $(3)\mu(y) \le \inf\{\mu(z): z \in x \cdot y\}$ for all $y \in M$ and $x \in R$.

Definition 2.14 [11] An intuitionistic fuzzy set $A = \{\alpha_A, \beta_A\}$ in an H_{ν} -module M over an H_{ν} -ring R is said to be an intuitionistic fuzzy H_{ν} -submodule of M if the following axioms hold:

- $(1)\min\{\alpha_A(x),\alpha_A(y)\} \leq \inf\{\alpha_A(z): z \in x+y\} \text{ and } \max\{\beta_A(x),\beta_A(y)\} \geq \sup\{\beta_A(z): z \in x+y\} \text{ for all } x,y \in M,$
- (2) For all $x, a \in M$ there exists $y \in M$ such that $x \in a + y$ and $\min\{\alpha_A(a), \alpha_A(x)\} \le \alpha_A(z)$ and $\max\{\beta_A(a), \beta_A(x)\} \ge \beta_A(y)$,

 $x, a \in M$ there exists $z \in M$ $\min\{\mu_A(a),\mu_A(x)\} \le \mu_A(z)$ such that $x \in z + a$ and $\max\{\beta_A(a),\beta_A(x)\} \ge \beta_A(z),$

$$(4)\alpha_{\scriptscriptstyle A}(x) \leq \inf\{\alpha_{\scriptscriptstyle A}(z): z \in r \cdot x\} \text{ and } \beta_{\scriptscriptstyle A}(x) \geq \sup\{\beta_{\scriptscriptstyle A}(z): z \in r \cdot x\} \text{ for all } x \in M \text{ and } r \in R.$$

Definition 2.15 [17] By a t-norm T, we mean a function $T:[0,1]\times[0,1]\to[0,1]$ satisfying the following conditions:

$$(i)T(x,1)=x,$$

$$(ii)T(x,y) \le T(x,z)$$
 if $y \le z$,

$$(iii)T(x,y)=T(y,x),$$

$$(iv)T(x,T(y,z)) = T(T(x,y),z)$$

For all $x, y, z \in [0,1]$.

Definition 2.16 [17] By a s-norm S, we mean a function $S:[0,1]\times[0,1]\to[0,1]$ satisfying the following conditions:

$$(i)S(x,0)=x,$$

$$(ii) S(x, y) \le S(x, z)$$
 if $y \le z$,

$$(iii)S(x,y) = S(y,x),$$

$$(iv)S(x,S(y,z)) = S(S(x,y),z)$$

For all $x, y, z \in [0,1]$.

It is clear that

$$T(\alpha, \beta) \le \min\{\alpha, \beta\} \le \max\{\alpha, \beta\} \le S(\alpha, \beta)$$
 For all $\alpha, \beta \in [0, 1]$.

By an interval number \tilde{a} we mean an interval $\left[a^-, a^+\right]$ where $0 \le a^+ \le 1$. The set of all interval numbers is denoted by D[0,1]. We also identify the interval [a,a] by the number $a \in [0,1]$. 1JCR

For the interval numbers $\tilde{a}_i = [a_i^-, a_i^+] \in D[0,1], i \in I$, we define

$$\max\left\{\tilde{a}_{i}, \tilde{b}_{i}\right\} = \left[\max\left(a_{i}^{-}, b_{i}^{-}\right), \max\left(a_{i}^{+}, b_{i}^{+}\right)\right],$$

$$\min\left\{\tilde{a}_{i}, \tilde{b}_{i}\right\} = \left[\min\left(a_{i}^{-}, b_{i}^{-}\right), \min\left(a_{i}^{+}, b_{i}^{+}\right)\right],$$

$$\inf \tilde{a}_i = \left[\bigwedge_{i \in I} a_i^-, \bigwedge_{i \in I} a_i^+ \right], \sup \tilde{a}_i = \left[\bigvee_{i \in I} a_i^-, \bigvee_{i \in I} a_i^+ \right]$$

and put

$$\left(1\right)\tilde{a}_{\mathbf{1}} \leq \tilde{a}_{\mathbf{2}} \Longleftrightarrow a_{\mathbf{1}}^{-} \leq a_{\mathbf{2}}^{-} \text{ and } a_{\mathbf{1}}^{+} \leq a_{\mathbf{2}}^{+},$$

$$(2)\tilde{a}_1 = \tilde{a}_2 \Leftrightarrow a_1^- = a_2^- \text{ and } a_1^+ = a_2^+,$$

$$(3)\tilde{a}_1 < \tilde{a}_2 \iff \tilde{a}_1 \le \tilde{a}_2 \text{ and } \tilde{a}_1 \ne \tilde{a}_2,$$

$$(4)k\tilde{a} = [ka^-, ka^+]$$
, whenever $0 \le k \le 1$.

It is clear that $(D[0,1], \leq, \vee, \wedge)$ is a complete lattice with 0 = [0,0] as least element and 1 = [1,1] as greatest element.

By an interval valued fuzzy set F on X we mean the set $F = \{(x, \lceil \alpha_F^-(x), \alpha_F^+(x) \rceil) : x \in X\}$. Where α_F^- and α_F^+ are fuzzy

subsets of X such that $\alpha_F^-(x) \le \alpha_F^+(x)$ for all $x \in X$. Put $\tilde{\alpha}_F(x) = \lceil \alpha_F^-(x), \alpha_F^+(x) \rceil$. Then $F = \{(x, \tilde{\alpha}_F(x)) : x \in X\}$,

where $\tilde{\alpha}_{\scriptscriptstyle F}: X \to D[0,1]$.

If A, B are two interval valued fuzzy subsets of X, then we define

 $A \subseteq B$ if and only if for all $x \in X$, $\alpha_A^-(x) \le \alpha_B^-(x)$ and $\alpha_A^+(x) \le \alpha_B^+(x)$,

$$A=B$$
 if and only if for all $x \in X$, $\alpha_A^-(x) = \alpha_B^-(x)$ and $\alpha_A^+(x) = \alpha_B^+(x)$,

Also, the union, intersection and complement are defined as follows: let A; B be two interval valued fuzzy subsets of X, then

$$A \cup B = \left\{ \left(x, \left[\max \left\{ \alpha_A^-(x), \alpha_B^-(x) \right\}, \max \left\{ \alpha_A^+(x), \alpha_B^+(x) \right\} \right] \right) : x \in X \right\},$$

$$A \cap B = \left\{ \left(x, \left[\min \left\{ \alpha_A^-(x), \alpha_B^-(x) \right\}, \min \left\{ \alpha_A^+(x), \alpha_B^+(x) \right\} \right] \right) : x \in X \right\},$$

$$A^{c} = \left\{ \left(x, \left[\left\{ 1 - \alpha_{A}^{-}(x), 1 - \alpha_{A}^{+}(x) \right\} \right] \right) : x \in X \right\}.$$

According to Atanassov an interval valued intuitionistic fuzzy set on X is defined as an object of the form $A = \{(x, \tilde{\alpha}_A(x), \tilde{\beta}_A(x)) : x \in X\}$, where $\tilde{\alpha}_A(x)$ and $\tilde{\beta}_A(x)$ are interval valued fuzzy sets on X such that $0 \le \sup \tilde{\alpha}_A(x) + \sup \tilde{\beta}_A(x) \le 1$ for all $x \in X$.

For the sake of simplicity, in the following such interval valued intuitionistic fuzzy sets will be denoted by $A = (\tilde{\alpha}_A, \tilde{\beta}_A)$.

3. Interval Valued Intuitionistic (S, T)-Fuzzy Hv-Submodules

In what follows, let M denote an Hv-module over an Hv-ring R unless otherwise.

Definition 3.1. An interval valued intuitionistic fuzzy set $A = (\tilde{\alpha}_A, \tilde{\beta}_A)$ of M is called an intuitionistic fuzzy Hv-submodule of M with respect to t-norm T and s-norm S (briefly, intuitionistic (S, T)-fuzzy Hv-submodule of M) if it satisfies the following conditions:

$$(1)T(\tilde{\alpha}_{A}(x),\tilde{\alpha}_{A}(y)) \leq \inf_{z \in x+y} \tilde{\alpha}_{A}(z) \text{ and } S(\tilde{\beta}_{A}(x),\tilde{\beta}_{A}(y)) \geq \sup_{z \in x+y} \tilde{\beta}_{A}(z), \forall x, y \in M,$$

- (2) For all $x, a \in M$ there exists $y \in M$ such that $x \in a + y$ and $T(\tilde{\alpha}_A(a), \tilde{\alpha}_A(x)) \leq \tilde{\alpha}_A(y)$ and $S(\tilde{\beta}_A(a), \tilde{\beta}_A(x)) \geq \tilde{\beta}_A(y)$,
- (3) For all $x, a \in M$ there exists $z \in M$ such that $x \in z + a$ and $T(\tilde{\alpha}_A(a), \tilde{\alpha}_A(x)) \le \tilde{\alpha}_A(z)$ and $S(\tilde{\beta}_A(a), \tilde{\beta}_A(x)) \ge \tilde{\beta}_A(z)$,
- $(4)\tilde{\alpha}_A(x) \leq \inf_{z \in r \cdot x} \tilde{\alpha}_A(z)$ and $\tilde{\beta}_A(x) \geq \sup_{z \in r \cdot x} \tilde{\beta}_A(z)$, for all $x \in M$ and $r \in R$.

Definition 3.2. The norms T and S are called dual if for all $a, b \in [0,1], \overline{T(a,b)} = S(\overline{a}, \overline{b})$.

Lemma 3.3. Let T and S be dual norms. If $A = (\tilde{\alpha}_A, \tilde{\beta}_A)$ is an interval valued intuitionistic (S, T)-fuzzy Hv-submodule of M, then so is $\Box A = (\tilde{\alpha}_A, \overline{\tilde{\alpha}_A})$.

Proof. It is sufficient to show that $\overline{\tilde{\alpha}}_A$ satisfies the conditions of Definition 3.1. For all $x, y \in M$, we have $T\left(\tilde{\alpha}_A\left(x\right), \tilde{\alpha}_A\left(y\right)\right) \leq \inf_{z \in x+y} \tilde{\alpha}_A\left(z\right)$ and so $T\left(1 - \overline{\tilde{\alpha}}_A\left(x\right), 1 - \overline{\tilde{\alpha}}_A\left(y\right)\right) \leq \inf_{z \in x+y} \left(1 - \overline{\tilde{\alpha}}_A\left(z\right)\right)$.

Hence
$$T\left(1-\overline{\tilde{\alpha}_A}(x),1-\overline{\tilde{\alpha}_A}(y)\right) \leq \inf_{z\in x+y} \left(1-\overline{\tilde{\alpha}_A}(z)\right)$$
.

Which implies $T\left(1-\overline{\tilde{\alpha}}_{A}(x),1-\overline{\tilde{\alpha}}_{A}(y)\right) \leq 1-\sup_{z\in x+y}\overline{\tilde{\alpha}}_{A}(z)$ since T and S are dual.

Now, let $a, x \in M$. Then there exists $y \in M$ such that $x \in a + y$ and $T(\tilde{\alpha}_A(a), \tilde{\alpha}_A(x)) \leq \tilde{\alpha}_A(y)$. It follows that that $T(1 - \overline{\tilde{\alpha}_A}(a), 1 - \overline{\tilde{\alpha}_A}(x)) \leq 1 - \overline{\tilde{\alpha}_A}(y)$,

so that
$$\overline{\tilde{\alpha}_A}(y) \le 1 - T(1 - \overline{\tilde{\alpha}_A}(a), 1 - \overline{\tilde{\alpha}_A}(x)) = S(\overline{\tilde{\alpha}_A}(a), \overline{\tilde{\alpha}_A}(x)).$$

Similarly, let $a, x \in M$. Then there exists $z \in M$ such that $x \in z + a$ and $\overline{\tilde{\alpha}}_A(z) \leq S(\overline{\tilde{\alpha}}_A(a), \overline{\tilde{\alpha}}_A(x))$.

Now, let $x \in M$ and $r \in R$, we have $\tilde{\alpha}_A(x) \leq \inf_{z \in r \cdot x} \tilde{\alpha}_A(z)$ since α_A is a T-fuzzy Hv-submodule of M. Hence $1 - \overline{\tilde{\alpha}_A}(x) \leq \inf_{z \in r \cdot x} \left(1 - \overline{\tilde{\alpha}_A}(z)\right)$ which implies $\sup_{z \in r \cdot x} \overline{\tilde{\alpha}_A}(z) \leq \overline{\tilde{\alpha}_A}(x)$. Therefore $\Box A = \left(\tilde{\alpha}_A, \overline{\tilde{\alpha}_A}\right)$ is an intuitionistic (S, T)-fuzzy Hv-submodule of M.

Lemma 3.4. Let T and S be dual norms. If $A = \left(\tilde{\alpha}_A, \tilde{\beta}_A\right)$ is an interval valued intuitionistic (S, T)-fuzzy Hv-submodule of M, then so is $\Diamond A = \left(\overline{\tilde{\beta}_A}, \tilde{\beta}_A\right)$.

Proof. The proof is similar to the proof of Lemma 3.3.

Combining the above two lemmas it is not difficult to verify that the following theorem is valid.

Theorem 3.5. Let T and S be dual norms. Then $A = (\tilde{\alpha}_A, \tilde{\beta}_A)$ is an interval valued intuitionistic (S, T)-fuzzy Hv-submodule of M if and only if $\Box A$ and $\Diamond A$ are interval valued intuitionistic (S, T)-fuzzy Hv-submodules of M.

Corollary 3.6. Let T and S be dual norms. Then $A = (\tilde{\alpha}_A, \tilde{\beta}_A)$ is an interval valued intuitionistic (S, T)-fuzzy Hv-submodule of M if and only if $\tilde{\alpha}_{\scriptscriptstyle A}$ and $\overline{\tilde{\beta}_{\scriptscriptstyle A}}$ are T –fuzzy Hv-submodules of M.

Definition 3.7. An interval valued intuitionistic (S, T)-fuzzy Hv-submodule $A = \left(\tilde{\alpha}_A, \tilde{\beta}_A\right)$ of M is said to be imaginable if $\tilde{\alpha}_A$ and β_A satisfy the imaginable property.

The following are obvious.

Lemma 3.8. Every imaginable interval valued intuitionistic (S, T)-fuzzy Hv-submodule of M is interval valued intuitionistic fuzzy Hv-

Lemma 3.9. [19] A fuzzy set μ in M is a fuzzy Hv-submodule of M if and only if the non-empty U $(\mu; \alpha)$, $\alpha \in [0,1]$ is an Hv-

Lemma 3.10. [19] A fuzzy set μ in M is a fuzzy Hy-submodule of M if and only if the non-empty μ is an anti-fuzzy Hy-submodule of

By the above Lemmas, we can give the following results.

Theorem 3.11. If $A = (\tilde{\alpha}_A, \tilde{\beta}_A)$ is an imaginable interval valued intuitionistic fuzzy set in M. Then $A = (\tilde{\alpha}_A, \tilde{\beta}_A)$ is an interval valued intuitionistic (S, T)-fuzzy Hv-submodule of M if and only if the non-empty sets $U(\tilde{\alpha}_A;\alpha)$ and $L(\tilde{\beta}_A;\alpha)$ are Hv-submodules of M, for every $\alpha \in [0,1]$.

Theorem 3.12. Let $A = (\tilde{\alpha}_A, \tilde{\beta}_A)$ be an interval valued intuitionistic (S, T)-fuzzy Hv-submodule of M. Then $\tilde{\alpha}_{A}(x) = \sup\{\alpha \in [0,1] \mid x \in U(\tilde{\alpha}_{A};\alpha)\} \text{ and } \tilde{\beta}_{A}(x) = \inf\{\alpha \in [0,1] \mid x \in L(\tilde{\beta}_{A};\alpha)\}, \text{ for all } x \in M.$

Definition 3.13. Let f: M o M' be a strong epimorphism of Hv-modules. If $A = (\tilde{\alpha}_A, \tilde{\beta}_A)$ is an interval valued intuitionistic fuzzy set in M', then the inverse image of A under f, denoted by $f^{-1}(A)$, is an interval valued intuitionistic fuzzy set in M, defined by $f^{-1}(A) = (f^{-1}(\tilde{\alpha}_A), f^{-1}(\beta_A)).$

By the above Definition, we can give the following result.

Theorem 3.14. Let $f: M \to M'$ be a strong epimorphism of Hv-modules. If $A = (\tilde{\alpha}_A, \tilde{\beta}_A)$ is an interval valued intuitionistic (S, T)fuzzy Hv-submodule of M'. Then the inverse image $f^{-1}(A) = (f^{-1}(\tilde{\alpha}_A), f^{-1}(\tilde{\beta}_A))$ of A under f is an interval valued intuitionistic (S, T)-fuzzy Hv-submodule of M.

4. Interval Valued Intuitionistic (S, T)-Fuzzy Relations

We first recall that a fuzzy relation on any set X is a fuzzy set $\mu: X \times X \to [0, 1]$. We now give the following definitions and cite some

Definition 4.1. An interval valued intuitionistic fuzzy set $A = \left(\tilde{\alpha}_A, \tilde{\beta}_A\right)$ is called an interval valued intuitionistic fuzzy relation on any set X if $\tilde{\alpha}_A$ and $\tilde{\beta}_A$ are fuzzy relations on X.

Definition 4.2. Let $A = (\tilde{\alpha}_A, \tilde{\beta}_A)$ and $B = (\tilde{\alpha}_B, \tilde{\beta}_B)$ be interval valued intuitionstic fuzzy sets on a set X. If $A = (\tilde{\alpha}_A, \tilde{\beta}_A)$ is an interval valued intuitionistic fuzzy relation on X, then $A = \left(\tilde{\alpha}_A, \tilde{\beta}_A\right)$ is called an interval valued intuitionistic (S, T)-fuzzy relation on $B = (\tilde{\alpha}_R, \tilde{\beta}_R)$ if and $\tilde{\beta}_A(x, y) \ge S(\tilde{\beta}_R(x), \tilde{\beta}_R(y))$, for all $x, y \in X$.

Definition 4.3. The interval valued intuitionistic (S, T)-Cartesian product of A and B, denoted by A × B, is an interval valued $\text{intuitionistic} \quad \text{fuzzy} \quad \text{set} \quad \text{on} \quad \mathbf{X}, \quad \text{which} \quad \text{is} \quad \text{defined} \quad \text{by} \quad \mathbf{A} \times \mathbf{B} = \ (\tilde{\alpha}_{\scriptscriptstyle A}, \tilde{\beta}_{\scriptscriptstyle A}) \times (\tilde{\alpha}_{\scriptscriptstyle B}, \tilde{\beta}_{\scriptscriptstyle B}) \ = \ (\tilde{\alpha}_{\scriptscriptstyle A} \times \tilde{\alpha}_{\scriptscriptstyle B}, \ \tilde{\beta}_{\scriptscriptstyle A} \times \tilde{\beta}_{\scriptscriptstyle B}),$ $(\tilde{\alpha}_A \times \tilde{\alpha}_B)(x, y) = T(\tilde{\alpha}_A(x), \tilde{\alpha}_B(y))$ and $(\tilde{\beta}_A \times \tilde{\beta}_B)(x, y) = S(\tilde{\beta}_A(x), \tilde{\beta}_B(y))$ hold for all $x, y \in X$.

Lemma 4.4. If $A = (\tilde{\alpha}_A, \tilde{\beta}_A)$ and $B = (\tilde{\alpha}_B, \tilde{\beta}_B)$ are interval valued intuitionistic fuzzy sets on a set X. Then we have (i) A × B is an interval valued intuitionistic (S, T)-fuzzy relation on X;

 $(ii) \ \ U(\tilde{\alpha}_{\scriptscriptstyle A} \times \tilde{\alpha}_{\scriptscriptstyle B}; \alpha) \ = U(\tilde{\alpha}_{\scriptscriptstyle A}; \alpha) \times U(\tilde{\alpha}_{\scriptscriptstyle B}; \alpha) \ \ \text{and} \ \ U(\tilde{\beta}_{\scriptscriptstyle A} \times \tilde{\beta}_{\scriptscriptstyle B}; \alpha) \ \ = U(\tilde{\beta}_{\scriptscriptstyle A}; \alpha) \times U(\tilde{\beta}_{\scriptscriptstyle B}; \alpha) \ \ \text{for all} \ \ \alpha \in [0,1].$

Definition 4.5. If $A = \left(\tilde{\alpha}_A, \tilde{\beta}_A\right)$ and $B = \left(\tilde{\alpha}_B, \tilde{\beta}_B\right)$ are interval valued intuitionistic fuzzy sets on a set X, the strongest interval valued intuitionistic (S, T)-fuzzy relation on X is defined by $A_B = \left(\tilde{\alpha}_{A_{\alpha_B}}, \tilde{\beta}_{A_{\beta_B}}\right)$, where $\tilde{\alpha}_{A_{\alpha_B}}(x, y) = T(\tilde{\alpha}_B(x), \tilde{\alpha}_B(y))$ and $\tilde{\beta}_{A_{\beta_B}}(x, y) = S(\tilde{\beta}_B(x), \tilde{\beta}_B(y))$ for all $x, y \in X$.

Lemma 4.6. For the interval valued intuitionistic fuzzy sets $A = \left(\tilde{\alpha}_A, \tilde{\beta}_A\right)$ and $B = \left(\tilde{\alpha}_B, \tilde{\beta}_B\right)$ on a set X, let A_B be the strongest interval valued intuitionistic (S, T)-fuzzy relation on X. Then for any $\alpha \in [0,1]$, we have $U(\tilde{\alpha}_{A_{\alpha_B}}; \alpha) = U(\tilde{\alpha}_B; \alpha) \times U(\tilde{\alpha}_B; \alpha)$ and $L(\tilde{\beta}_{A_{\alpha_B}}; \alpha) = L(\tilde{\beta}_B; \alpha) \times L(\tilde{\beta}_B; \alpha)$.

Lemma 4.7. [20] For all α , β , δ , $\gamma \in [0,1]$, we have T (T (α , β), T (γ , δ)) = T (T (α , γ), (β , δ)); S(S(α , β), S(γ , δ)) = (S(α , γ), S(β , δ)).

By using the above lemmas, we have the following theorem.

Theorem 4.8. If $A = (\tilde{\alpha}_A, \tilde{\beta}_A)$ and $B = (\tilde{\alpha}_B, \tilde{\beta}_B)$ are interval valued intuitionistic (S, T)-fuzzy Hv-submodules of M. Then A×B is an interval valued intuitionistic (S, T)-fuzzy Hv-submodule of M×M.

Corollary 4.9. If $A = (\tilde{\alpha}_A, \tilde{\beta}_A)$ and $B = (\tilde{\alpha}_B, \tilde{\beta}_B)$ are imaginable interval valued intuitionistic (S, T)-fuzzy Hv-submodules of M. Then $A \times B$ is an imaginable interval valued intuitionistic (S, T)-fuzzy Hv-submodule of M ×M.

The following theorem characterizes the imaginable interval valued intuitionistic (S, T)-fuzzy Hv-submodules on Hv-modules.

Theorem 4.10. If $A = \begin{pmatrix} \tilde{\alpha}_A, \tilde{\beta}_A \end{pmatrix}$ and $B = \begin{pmatrix} \tilde{\alpha}_B, \tilde{\beta}_B \end{pmatrix}$ are imaginable interval valued intuitionistic fuzzy sets of M and A_B is the strongest interval valued intuitionistic (S, T)-fuzzy relation on M. Then $B = \begin{pmatrix} \tilde{\alpha}_B, \tilde{\beta}_B \end{pmatrix}$ is an imaginable interval valued intuitionistic (S, T)-fuzzy Hv-submodule of M if and only if A_B is an imaginable interval valued intuitionistic (S, T)-fuzzy Hv-submodule of M ×M.

Proof. Let $B = (\tilde{\alpha}_B, \tilde{\beta}_B)$ be an imaginable interval valued intuitionistic (S, T)-fuzzy Hv- submodule of M. Then we can verify the following conditions of definition 3.1.

(1) Let $x = (x_1, x_2), y = (y_1, y_2) \in M \times M$. For any $z = (z_1, z_2) \in X + y$, we have

$$\begin{split} \inf_{\mathbf{z} \in \mathbf{x} + \mathbf{y}} \tilde{\alpha}_{\mathbf{A}_{\alpha_B}}(\mathbf{z}) &= \inf_{(\mathbf{z}_1, \mathbf{z}_2) \in (\mathbf{x}_1, \mathbf{x}_2) + (\mathbf{y}_1, \mathbf{y}_2)} \tilde{\alpha}_{\mathbf{A}_{\alpha_B}}(\mathbf{z}_1, \mathbf{z}_2) \\ &= \inf_{(\mathbf{z}_1, \mathbf{z}_2) \in (\mathbf{x}_1 + \mathbf{y}_1, \mathbf{x}_2 + \mathbf{y}_2)} \{ \mathbf{T}(\tilde{\alpha}_B(\mathbf{z}_1), \ \tilde{\alpha}_B(\mathbf{z}_2)) \} \\ &= \mathbf{T}(\inf_{\mathbf{z}_1 \in \mathbf{x}_1 + \mathbf{y}_1} \tilde{\alpha}_B(\mathbf{z}_1), \inf_{\mathbf{z}_2 \in \mathbf{x}_2 + \mathbf{y}_2} \tilde{\alpha}_B(\mathbf{z}_2)) \\ &\geq \mathbf{T}(\mathbf{T}(\tilde{\alpha}_B(\mathbf{x}_1), \ \tilde{\alpha}_B(\mathbf{y}_1)), \ \mathbf{T}(\tilde{\alpha}_B(\mathbf{x}_2), \ \tilde{\alpha}_B(\mathbf{y}_2))) \\ &= \mathbf{T}(\mathbf{T}(\tilde{\alpha}_B(\mathbf{x}_1), \ \tilde{\alpha}_B(\mathbf{x}_2)), \ \mathbf{T}(\tilde{\alpha}_B(\mathbf{y}_1), \ \tilde{\alpha}_B(\mathbf{y}_2))) \\ &= \mathbf{T}(\tilde{\alpha}_A \tilde{\alpha}_B(\mathbf{x}_1, \mathbf{x}_2), \ \tilde{\alpha}_A \tilde{\alpha}_B(\mathbf{y}_1, \mathbf{y}_2)) \\ &= \mathbf{T}(\tilde{\alpha}_A \tilde{\alpha}_B(\mathbf{x}), \ \tilde{\alpha}_A \tilde{\alpha}_B(\mathbf{y})). \end{split}$$

Similarly, we have $\sup_{z \in x+y} \tilde{\beta}_{A_{q_n}}(z) \leq S(\tilde{\beta}_{A_{q_n}}(x), \tilde{\beta}_{A_{q_n}}(y)).$

(2) For all $\mathbf{x} = (\mathbf{x}_1, \ \mathbf{x}_2)$, $\mathbf{a} = (a_1, \ a_2) \in \mathbf{M} \times \mathbf{M}$. Then $\mathbf{y}_1, \ \mathbf{y}_2 \in \mathbf{M}$ such that $\mathbf{x}_1 \in \mathbf{a}_1 + \mathbf{y}_1$ and $\mathbf{x}_2 \in \mathbf{a}_2 + \mathbf{y}_2$, and thus $(\mathbf{x}_1, \ \mathbf{x}_2) \in (\mathbf{a}_1 + \mathbf{y}_1, \ \mathbf{a}_2 + \mathbf{y}_2) = (\mathbf{a}_1, \ \mathbf{a}_2) + (\mathbf{y}_1, \ \mathbf{y}_2)$. Moreover, we have

$$\begin{split} \tilde{\alpha}_{\mathbf{A}_{\alpha_B}}(\mathbf{y}) &= \tilde{\alpha}_{\mathbf{A}_{\alpha_B}}(\mathbf{y}_1, \, \mathbf{y}_2) \, = \mathbf{T}(\tilde{\alpha}_B(\mathbf{y}_1), \, \tilde{\alpha}_B(\mathbf{y}_2)) \\ &\geq \mathbf{T}(\mathbf{T}(\tilde{\alpha}_B(a_1), \, \tilde{\alpha}_B(x_1)), \, \mathbf{T}(\tilde{\alpha}_B(a_2), \, \tilde{\alpha}_B(x_2))) \\ &= (\mathbf{T}(\tilde{\alpha}_B(a_1), \, \tilde{\alpha}_B(a_2)), \, \mathbf{T}(\tilde{\alpha}_B(x_1), \, \tilde{\alpha}_B(x_2))) \\ &= \mathbf{T}(\tilde{\alpha}_{\mathbf{A}_{\alpha_B}}(a_1, a_2), \, \tilde{\alpha}_{\mathbf{A}_{\alpha_B}}(x_1, \mathbf{x}_2)) \\ &= \mathbf{T}(\tilde{\alpha}_{\mathbf{A}_{\alpha_B}}(a), \, \tilde{\alpha}_{\mathbf{A}_{\alpha_B}}(x)) \end{split}$$

Similarly, $\tilde{\beta}_{A_{\beta_R}}(y) \leq S(\tilde{\beta}_{A_{\beta_R}}(a), \ \tilde{\beta}_{A_{\beta_R}}(x)).$

(3) is similar to (2).

(4) Let
$$x = (x_1, x_2) \in M \times M$$
 and $r = (r_1, r_2) \in R \times R$. For any $z = (z_1, z_2) \in (r_1, r_2) \cdot (x_1, x_2)$, we have

$$\begin{split} \inf_{\mathbf{z} \in \mathbf{r} \cdot \mathbf{x}} \tilde{\alpha}_{\mathbf{A}_{\alpha_B}}(\mathbf{z}) &= \inf_{(\mathbf{z}_1, \mathbf{z}_2) \in (\mathbf{r}_1, \mathbf{r}_2) \cdot (\mathbf{x}_1, \mathbf{x}_2)} \tilde{\alpha}_{\mathbf{A}_{\alpha_B}}(\mathbf{z}_1, \ \mathbf{z}_2) \\ &= \inf_{(\mathbf{z}_1, \mathbf{z}_2) \in (\mathbf{r}_1 \cdot \mathbf{x}_1, \mathbf{r}_2 \cdot \mathbf{x}_2)} \mathbf{T}(\tilde{\alpha}_B(\mathbf{z}_1), \ \tilde{\alpha}_B(\mathbf{z}_2)) \\ &\geq \mathbf{T}(\inf_{\mathbf{z}_1 \in \mathbf{r}_1 \cdot \mathbf{x}_1} \tilde{\alpha}_B(\mathbf{z}_1), \inf_{\mathbf{z}_2 \in \mathbf{r}_2 \cdot \mathbf{x}_2} \tilde{\alpha}_B(\mathbf{z}_2)) \\ &\geq \mathbf{T}(\tilde{\alpha}_B(\mathbf{x}_1), \ \tilde{\alpha}_B(\mathbf{x}_2)) \\ &= \tilde{\alpha}_{\mathbf{A}_{\alpha_B}}(\mathbf{x}_1, \ \mathbf{x}_2) = \tilde{\alpha}_{\mathbf{A}_{\alpha_B}}(\mathbf{x}) \end{split}$$

Similarly, $\sup_{z \in r, x} \tilde{\beta}_{A_{\beta_B}}(z) \leq \tilde{\beta}_{A_{\beta_B}}(x)$.

This shows that A_B is an interval valued intuitionistic (S, T)-fuzzy Hv-submodule of M×M.

Now, for any $\mathbf{x}=(\mathbf{x}_1,\,\mathbf{x}_2)\in\mathbf{M}\times\mathbf{M}$, we can easily show that $\mathbf{T}(\tilde{\alpha}_{\mathbf{A}_{\alpha_B}}(\mathbf{x}),\,\tilde{\alpha}_{\mathbf{A}_{\alpha_B}}(\mathbf{x}))=\tilde{\alpha}_{\mathbf{A}_{\alpha_B}}(\mathbf{x})$ and $\mathbf{S}(\tilde{\beta}_{\mathbf{A}_{\beta_B}}(\mathbf{x}),\,\tilde{\beta}_{\mathbf{A}_{\beta_B}}(\mathbf{x}))=\tilde{\beta}_{\mathbf{A}_{\beta_B}}(\mathbf{x}).$

Hence, A_B is an interval valued imaginable intuitionistic (S, T)-fuzzy Hv-submodule of M ×M.

To prove the converse of the theorem, we need prove the conditions (1)-(4) of definition 3.1 hold.

(1) Let $x, y \in M$. Then we have

$$\inf_{\mathbf{z} \in \mathbf{x} + \mathbf{y}} \tilde{\alpha}_{B}(\mathbf{z}) = \inf_{\mathbf{z} \in \mathbf{x} + \mathbf{y}} \mathbf{T}(\tilde{\alpha}_{B}(\mathbf{z}), \ \tilde{\alpha}_{B}(\mathbf{z}))$$

$$= \inf_{\mathbf{z} \in \mathbf{x} + \mathbf{y}} \tilde{\alpha}_{\mathbf{A}_{\alpha_{B}}}(\mathbf{z}, \mathbf{z})$$

$$= \inf_{(\mathbf{z}, \mathbf{z}) \in (\mathbf{x}, \mathbf{x}) + (\mathbf{y}, \mathbf{y})} \tilde{\alpha}_{\mathbf{A}_{\alpha_{B}}}(\mathbf{z}, \mathbf{z})$$

$$\geq \mathbf{T}(\tilde{\alpha}_{\mathbf{A}_{\alpha_{B}}}(\mathbf{x}, \mathbf{x}), \ \tilde{\alpha}_{\mathbf{A}_{\alpha_{B}}}(\mathbf{y}, \mathbf{y}))$$

$$\geq \mathbf{T}(\mathbf{T}(\tilde{\alpha}_{B}(\mathbf{x}), \ \tilde{\alpha}_{B}(\mathbf{x})), \ \mathbf{T}(\tilde{\alpha}_{B}(\mathbf{y}), \ \tilde{\alpha}_{B}(\mathbf{y})))$$

$$= \mathbf{T}(\tilde{\alpha}_{B}(\mathbf{x}), \ \tilde{\alpha}_{B}(\mathbf{y})).$$

Similarly, we have $\sup_{\mathbf{z}\in\mathbf{x}+\mathbf{y}}\tilde{\beta}_{B}(\mathbf{z}) \leq S(\tilde{\beta}_{B}(\mathbf{x}), \ \tilde{\beta}_{B}(\mathbf{y})).$

(2) For all $x, a \in M$, and thus $(x, x), (a, a) \in M \times M$. Then there exists $(y, y) \in M$ such that $(x, x) \in (a, a) + (y, y) = (a + y, a + y)$. That is, $x \in a + y$.

Moreover, we have

$$\begin{split} \tilde{\alpha}_{B}(\mathbf{y}) &= \mathrm{T}(\tilde{\alpha}_{B}(\mathbf{y}), \ \tilde{\alpha}_{B}(\mathbf{y})) = \tilde{\alpha}_{\mathbf{A}_{\alpha_{B}}}(\mathbf{y}, \mathbf{y}) \\ &\geq \mathrm{T}(\tilde{\alpha}_{\mathbf{A}_{\alpha_{B}}}(\mathbf{a}, \mathbf{a}), \ \tilde{\alpha}_{\mathbf{A}_{\alpha_{B}}}(\mathbf{x}, \mathbf{x})) \\ &= \mathrm{T}(\mathrm{T}(\tilde{\alpha}_{B}(\mathbf{a}), \ \tilde{\alpha}_{B}(\mathbf{a})), \ \mathrm{T}(\tilde{\alpha}_{B}(\mathbf{x}), \ \tilde{\alpha}_{B}(\mathbf{x}))) \\ &= \mathrm{T}(\tilde{\alpha}_{B}(\mathbf{a}), \ \tilde{\alpha}_{B}(\mathbf{x})). \end{split}$$

Similarly, $\tilde{\beta}_B(y) \le S(\tilde{\beta}_B(a), \tilde{\beta}_B(x)).$

(3) is similar to (2).

(4) Let $x \in M$ and $r \in R$, we have

$$\begin{split} \inf_{\mathbf{z} \in \mathbf{r} \cdot \mathbf{x}} \tilde{\alpha}_{B}(\mathbf{z}) &= \inf_{\mathbf{z} \in \mathbf{r} \cdot \mathbf{x}} \mathbf{T}(\tilde{\alpha}_{B}(\mathbf{z}), \ \tilde{\alpha}_{B}(\mathbf{z})) \\ &= \inf_{(\mathbf{z}, \mathbf{z}) \in (\mathbf{r}, \mathbf{r}) \cdot (\mathbf{x}, \mathbf{x})} \tilde{\alpha}_{\mathbf{A}_{\alpha_{B}}}(\mathbf{z}, \ \mathbf{z}) \\ &\geq \tilde{\alpha}_{\mathbf{A}_{\alpha_{B}}}(\mathbf{x}, \ \mathbf{x}) \\ &= \mathbf{T}(\tilde{\alpha}_{B}(\mathbf{x}), \ \tilde{\alpha}_{B}(\mathbf{x})) \\ &= \tilde{\alpha}_{B}(\mathbf{x}). \end{split}$$

Similarly, $\sup_{z \in r \cdot x} \tilde{\beta}_{B}(z) \leq \tilde{\beta}_{A_{\beta_{R}}}(x)$.

This shows that conditions (1)-(4) hold and hence $B = \left(\tilde{\alpha}_B, \tilde{\beta}_B\right)$ is an imaginable interval valued intuitionistic (S, T)-fuzzy Hv-submodule of M.

Definition 4.11. If $A = (\tilde{\alpha}_A, \tilde{\beta}_A)$ and $B = (\tilde{\alpha}_B, \tilde{\beta}_B)$ are imaginable intuitionistic fuzzy sets on any set X, then the intuitionistic (S, T)-product of A and B, denoted by $[A \cdot B]_{(S,T)}$, is defined by

$$[\mathbf{A} \cdot \mathbf{B}]_{(S,T)} = [(\tilde{\alpha}_{A}, \, \tilde{\beta}_{A}) \cdot (\tilde{\alpha}_{B}, \, \tilde{\beta}_{B})]_{(S,T)}$$

$$= ([\tilde{\alpha}_{A} \cdot \, \tilde{\alpha}_{B}], [\tilde{\beta}_{A} \cdot \, \tilde{\beta}_{B}])_{(S,T)}$$

$$= ([\tilde{\alpha}_{A} \cdot \, \tilde{\alpha}_{B}]_{T}, [\tilde{\beta}_{A} \cdot \, \tilde{\beta}_{B}]_{S}),$$

 $\text{Where } [\tilde{\alpha}_{\scriptscriptstyle{A}} \cdot \quad \tilde{\alpha}_{\scriptscriptstyle{B}}]_{\scriptscriptstyle{T}}(x) \ = T(\tilde{\alpha}_{\scriptscriptstyle{A}}(x), \ \tilde{\alpha}_{\scriptscriptstyle{B}}(x)) \ \text{and} \ [\tilde{\beta}_{\scriptscriptstyle{A}} \cdot \quad \tilde{\beta}_{\scriptscriptstyle{B}}]_{\scriptscriptstyle{S}}(x) \ = S(\tilde{\beta}_{\scriptscriptstyle{A}}(x), \ \tilde{\beta}_{\scriptscriptstyle{B}}(x)), \quad \text{for all } x \in X.$

Theorem 4.12. If $A = \left(\tilde{\alpha}_A, \tilde{\beta}_A\right)$ and $B = \left(\tilde{\alpha}_B, \tilde{\beta}_B\right)$ are imaginable interval valued intuitionistic (S, T)-fuzzy Hv-submodules of M. If T^* (resp. S^*) is a t-norm (resp. s-norm) which dominates T (resp. S), that is, $T^*(T(\alpha, \beta), T(\gamma, \delta)) \ge T(T^*(\alpha, \gamma), T^*(\beta, \delta))$ and $S^*(S(\alpha, \beta), S(\gamma, \delta)) \le S(S^*(\alpha, \gamma), S^*(\beta, \delta))$ for all $\alpha, \beta, \gamma, \delta \in [0,1]$. Then for the intuitionistic (S^*, T^*)-product of A and B, $[A^*, B]_{(S^*, T^*)}$ is an intuitionistic (S, T)-fuzzy Hv-submodule of M.

Proof. In proving this theorem, we only need verify that the conditions (1)-(4) hold. The verification is montioned and we omit the details.

Let $f: M \to M'$ be a strong epimorphism of Hv-modules. Let T (resp. S) and T^* (resp. S^*) be the t-norms (resp. s-norms) such that T^* (resp. S^*) dominates T (resp. S). If $A = \begin{pmatrix} \tilde{\alpha}_A, \tilde{\beta}_A \end{pmatrix}$ and $B = \begin{pmatrix} \tilde{\alpha}_B, \tilde{\beta}_B \end{pmatrix}$ are imaginable interval valued intuitionistic fuzzy Hv-submodules of M', then the intuitionistic (S^*, T^*) -product of A and B, we have $[A^*, B]_{(S^*,T^*)}$ is an intuitionistic (S, T)-fuzzy Hv-submodule of M'. Since every strong epimorphic inverse image of an intuitionistic (S, T)-fuzzy Hv-submodule, the inverse images $f^{-1}(A)$, $f^{-1}(B)$, and $f^{-1}([A^*, B]_{(S^*,T^*)})$ are also intuitionistic (S, T)-fuzzy Hv-submodules of M. In the next theorem, we described that the relation between $f^{-1}([A^*, B]_{(S^*,T^*)})$ and intuitionistic (S^*, T^*) -product $[f^{-1}(A)^*, f^{-1}(B)]_{(S^*,T^*)}$ of $f^{-1}(A)$ and $f^{-1}(B)$.

Based on the above discussion, we have:

Theorem 4.13. Let $f: M \to M'$ be a strong epimorphism of Hv-modules. Let T^* (resp. S^*) be a t-norm (resp. s-norm) such that T^* (resp. S^*) dominates T (resp. S). If $A = \left(\tilde{\alpha}_A, \tilde{\beta}_A\right)$ and $B = \left(\tilde{\alpha}_B, \tilde{\beta}_B\right)$ are intuitionistic (S, T)-fuzzy Hv-submodule of M'. Then for the intuitionistic (S^* , T^*)-product $[A^* B]_{(S^*,T^*)}$ of A and B and the intuitionistic (S^* , T^*)-product $[f^{-1}(A)^* f^{-1}(B)]_{(S^*,T^*)}$ of A and A and

References

- [1] Marty F., Sur une generalization de la notion de group, in: 8th congress Math. Skandenaves, Stockhole, (1934) 45-49.
- [2] Vougiouklis T., A new class of hyperstructures, J. Combin. Inf. System Sci.
- [3] Davvaz B., A brief survey of the theory of H_{ν} -structures, in: Proceedings of the 8th International Congress on AHA, Greece 2002, Spanids Press, (2003) 39-70.
- [4] Zadeh L. A., Fuzzy sets, Inform. And Control 8 (1965) 338-353.
- [5] Atanassov K.T., Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986) 87-96.
- [6] Atanassov K. T., Intuitionistic fuzzy sets: Theory and Applications, Studies in fuzziness and soft computing, 35, Heidelberg, New York, Physica-Verl., 1999.
- [7] Atanassov K. T., New operations defined over the intuitionistic fuzzy sets, Fuzzy Sets and Systems 61, (1994) 137-142.
- [8] Biswas R., Intuitionistic fuzzy subgroups, Math. Forum 10 (1989) 37-46.

IJCR

- [9] Kim K. H., Dudek W. A., Jun Y. B., On intuitionistic fuzzy subquasigroups of quasigroups, Quasigroups Relat Syst 7 (2000) 15-28.
- [10] Kim K. H., Jun Y. B., Intuitionistic fuzzy ideals of semigroups, Indian J. Pure Appl. Math. 33 (4) (2002) 443-449.
- [11] Zhan J., Davvaz B., Corsini P., On Intuitionistic (S,T)-fuzzy H_{ν} -submodules of Hv-Modules, Southeast Asian Bulletin of Mathematics 36 (2012) 589-601.
- [12] Davvaz B., Dudek W. A., Jun Y. B., Intuitionistic fuzzy H_v-submodules, Inform. Sci. 176 (2006) 285-300.
- [13] Vougiouklis T., Hyperstructures and their representations, Hadronic Press, Florida, 1994.
- [14] Davvaz B., Fuzzy H_v-groups, Fuzzy Sets and Systems 101 (1999) 191-195.
- [15] Sinha A. K., Dewangan M. K., Intuitionistic Fuzzy H_{ν} -subgroups, International Journal of Advanced Engineering Research and Science 3 (2014) 30-37.
- [16] Davvaz B., Dudek W. A., Intuitionistic fuzzy H_{ν} —ideals, International Journal of Mathematics and Mathematical Sciences, 2006, 1-11.
- [17] Zhan J., Davvaz B., Corsini P., Intuitionistic (S, T)-fuzzy hyperquasigroups, Soft Comput 12 (2008) 1229-1238.
- [18] Bhakat S. K., Das P., On the definition of a fuzzy subgroup, Fuzzy Sets and Systems, 51(1992) 235-241.
- [19] Davvaz B., Fuzzy H_v-submodules, Fuzzy Sets and Systems 117 (2001) 477-484.
- [20] Yu Y., Mordeson J. N., Cheng S. C., Elements of L-algebras, Creighton Univ, Omaha, Nebraska, 1994.

